Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution.

نویسندگان

  • Damien Voiry
  • Hisato Yamaguchi
  • Junwen Li
  • Rafael Silva
  • Diego C B Alves
  • Takeshi Fujita
  • Mingwei Chen
  • Tewodros Asefa
  • Vivek B Shenoy
  • Goki Eda
  • Manish Chhowalla
چکیده

Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution can be easily achieved by electrolysis at large potentials that can be lowered with expensive platinum-based catalysts. Replacement of Pt with inexpensive, earth-abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen evolution. To this end, promising results have been reported using 2H (trigonal prismatic) XS₂ (where X  =  Mo or W) nanoparticles with a high concentration of metallic edges. The key challenges for XS₂ are increasing the number and catalytic activity of active sites. Here we report monolayered nanosheets of chemically exfoliated WS₂ as efficient catalysts for hydrogen evolution with very low overpotentials. Analyses indicate that the enhanced electrocatalytic activity of WS₂ is associated with the high concentration of the strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets. Our results suggest that chemically exfoliated WS₂ nanosheets are interesting catalysts for hydrogen evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemically exfoliated ReS2 nanosheets.

The production of two-dimensional rhenium disulfide (ReS2) nanosheets by exfoliation using lithium intercalation is demonstrated. The vibrational and photoluminescence properties of the exfoliated nanosheets are investigated, and the local atomic structure is studied by scanning and transmission electron microscopy. The catalytic activity of the nanosheets in a hydrogen evolution reaction (HER)...

متن کامل

Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction.

We report chemically exfoliated MoS2 nanosheets with a very high concentration of metallic 1T phase using a solvent free intercalation method. After removing the excess of negative charges from the surface of the nanosheets, highly conducting 1T phase MoS2 nanosheets exhibit excellent catalytic activity toward the evolution of hydrogen with a notably low Tafel slope of 40 mV/dec. By partially o...

متن کامل

Calcium Niobate Nanosheets Prepared by the Polymerized Complex Method as Catalytic Materials for Photochemical Hydrogen Evolution

The Dion-Jacobson phase niobate perovskite, KCa2Nb3O10, was prepared by the polymerized complex (PC) method. The corresponding proton-exchanged material, HCa2Nb3O10, was then exfoliated by reaction with tetra(n-butyl)ammonium hydroxide (TBAOH), yielding unilamellar colloidal nanosheets whose lateral dimensions increased with the final calcination temperature in the PC synthesis. By restacking t...

متن کامل

Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis.

The oxygen evolution reaction is a key reaction in water splitting. The common approach in the development of oxygen evolution catalysts is to search for catalytic materials with new and optimized chemical compositions and structures. Here we report an orthogonal approach to improve the activity of catalysts without alternating their compositions or structures. Specifically, liquid phase exfoli...

متن کامل

One-step assembly of 2H-1T MoS2:Cu/reduced graphene oxide nanosheets for highly efficient hydrogen evolution

The transition metal dichagenides and their metallic 1T structure are attracting contemporary attentions for applications in high-performance devices because their peculiar optical and electrical properties. The single and few layers 1T structure is generally obtained by mechanical or chemical exfoliation. This work presents facile one-step synthesis of 2H-1T MoS2:Cu/reduced graphene oxide nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 2013